
2018年高考北京卷典型试题分析(理综)

理

(续10月31日第1348期)

16.如图所示,一列简谐横波向右传播,P、Q 两质点平衡位置相距 0.15m。当 P 运动到上方 最大位移处时, Q 刚好运动到下方最大位移处, 则这列波的波长可能是

A.0.60m B.0.30m C.0.20m D.0.15m

【答案】B

【分析】本题考查的知识点为"简谐运动、机 械波、横波的图像",在《考试说明》中属于Ⅱ级 要求。本题主要考查考生的理解能力和推理能 考查物理学科核心素养中"科学观念"中的 运动与相互作用观念和"科学思维"中的模型构 建、科学推理要素

本题素材源于教材,意在引导考生在理解 简谐振动、机械波的基础上,通过理解题意并推 理,进一步画出横波的图像,再通过简单分析,

从题目表述可知,某时刻,P运动到上方最 大位移处 (波峰位置),Q 刚好运动到下方最大 位移处(波谷位置)。由于振动和波动均具有周 期性和往复性,此时P,Q之间的波形图可能是 n 个完整波形加半个波形,波长 λ 可能值为 0.15

-m(n=0,1,2,3·····)。据此便可判断选项 n+0.5B为正确选项。

17.若想检验"使月球绕地球运动的力"与 "使苹果落地的力"遵循同样的规律,在已知月 地距离约为地球半径60倍的情况下,需要验证

A.地球吸引月球的力约为地球吸引苹果的 力的 1/602

B.月球公转的加速度约为苹果落向地面加 速度的 1/602 C.自由落体在月球表面的加速度约为地球

表面的 1/6 D.苹果在月球表面受到的引力约为在地球 表面的 1/60

【答案】B

【分析】本题源于教材,考查的知识点涉及 "牛顿运动定律及其应用、匀速圆周运动、向心 加速度、万有引力定律及其应用",在《考试说 明》中均属于Ⅱ级要求。月—地检验在万有引力 的发现过程中具有重要意义, 更是考查考生科 学推理能力、科学探究能力的重要素材。本题从 物理学科核心素养角度,考查了"科学思维"的 模型构建能力和"科学探究"中的证据意识、"科 学态度与责任"中的科学本质的认识

发现太阳与行星之间作用力的规律之后,能 够解释行星的运动了。进一步设想:既然使太阳 与行星之间的力使得行星不能飞离太阳,那么是 什么力使得地面的物体不能离开地球,总要落回 地面呢? 也就是说,地球使树上苹果下落的力(重 力),与太阳、地球之间的吸引力是不是同一种力 呢? 即使在最高的山顶上,也会感受到重力的作 用,那这个力必定能延伸到远得多的地方。它会 不会作用到月球上? 拉住月球使它围绕地球运动 的力,与拉着苹果下落的力,以及太阳与地球、众 行星之间的作用也许真的是同一种力,遵循同样 的规律?这个想法的正确性要由事实来检验,即 验。因此,月—地检验在万有引力的发 现过程中具有重要的意义。

假定维持月球绕地球运动的力与使得苹果 下落的力是同一种力,同样遵从"平方反比"的 规律,即 $F \propto \frac{M_{\text{th}} m}{2}$,则地球吸引月球、苹果的

力不仅与月球、苹果距地球的距离有关,还与月 球、苹果的质量有关,所以选项 A 错误。根据牛 顿第二定律,若假设成立,则地球吸引月球、苹 果的力,使其获得的加速度仅与月球、苹果与地 球的距离有关,即 $a \propto \frac{M_{th} m}{2}$,所以选项B正

。 考生分析的这个问题中的模型, 应该是月 球绕地球做匀速圆周运动和苹果做自由落体 运动落向地面,并不涉及苹果在月球表面的自 由落体运动模型;如果在模型构建方面出现错 误,就会错选 C,不考虑牛顿第二定律的应用, (未完待续) 就会错选 D。

(续10月31日第1348期)

3.光反应在叶绿体类囊体上进行。在 适宜条件下,向类囊体悬液中加入氧化还 原指示剂 DCIP,照光后 DCIP 由蓝色逐 渐变为无色。该反应过程中

A.需要 ATP 提供能量 B.DCIP 被氧化

C.不需要光合色素参与

D.会产生氧气

【答案】D 【分析】光合作用是绿色植物最重要 的生命活动,是地球上其他生命活动的物 质和能量来源。光合作用分为光反应和碳 (暗)反应两阶段。光反应阶段,叶绿体类 囊体膜上的色素吸收光能,传递并激发高 能电子的释放,后者传递到 NADP+,形成 NADPH。膜上的色素再从水分子中夺取 电子,促使水分解,放出氧气和H+。水光 解及电子传递过程中形成的跨膜 H+梯度 驱动 ATP 的合成。因此光反应为碳同化 提供所需的 NADPH([H])和 ATP。本题 以离体类囊体光下反应产物导致指示剂 变色的实验现象为情境,考查考生对光反 应本质的理解与应用。解答本题,考生需 要运用所学生物学知识解释实验现象出 现的原因。

由题干可知,类囊体悬液在适宜条件 下照光能使蓝色的 DCIP 逐渐变为无色。 类囊体膜是进行光反应的场所,照光后类

囊体膜上会发生光反应。这一反应由光能 驱动,不需要 ATP 供能,A 选项错误。光 反应过程中形成活泼的还原剂,由此推测 DCIP 被还原,B选项错误。光能的吸收和 传递都是由类囊体膜上的光合色素和特 定蛋白质形成的复合物完成的,C 选项错 误。在中心色素被光能激发失去电子后会 从水中夺取电子;水被分解,释放 O_2,D 选项正确,为应选项。

本题意在引导高中生物学教学注重 基础和核心知识,回归教材,重视教材。只 有深入透彻地理解所学知识的本质,才能 具备学科素养养成的根基,并逐渐建立生 命观念,发展科学思维。

4.以下高中生物学实验中,操作不 正确的是

A.在制作果酒的实验中,将葡萄汁液 装满整个发酵装置

B.鉴定 DNA 时,将粗提产物与二苯 胺混合后进行沸水浴

C.用苏丹Ⅲ染液染色,观察花生子叶 细胞中的脂肪滴(颗粒)

D.用龙胆紫染液染色,观察洋葱根尖 分生区细胞中的染色体

【答案】A

【分析】本题以必修及选修教材中学 生实验为问题情境,考查考生对实验操作 过程的理解。试题内容均为北京市各高中 校可以完成的基础实验。"微生物的培养

与利用"是与社会生产生活紧密相关的生 物学知识,"生物体内物质的分离、鉴定技 术"则是通过实际操作加深理解课本知识 的操作性实验。解答本题,考生需要从选 项中识别出正确的操作,借此反映严谨而 清晰的思维过程。

在果酒制作的实验操作中,实验装置 必须预留一定的空间,一方面为酵母菌在 发酵前期进行有氧呼吸提供氧气,另一方 面防止发酵产气导致葡萄汁液溢出,A 选 项错误,为应选项。DNA 粗提取与鉴定的 实验,需要通过沸水浴才能显色,这一操 作过程无误,B 选项正确。用苏丹Ⅲ染液 染色观察花生子叶徒手切片细胞中的脂 肪滴(颗粒)是正确的操作,C选项正确。 利用龙胆紫对染色体进行染色这一实验 操作是正确的,D 选项正确。

生物科学是实验学科,考生参加实验 和实践活动是一个"亲历学习"的过程。亲 身经历过,亲自动手操作过,就不会只把 关注点放在实验结果"是什么"上,而会在 动手操作的过程中深入理解"为什么"。本 题意在引导高中教学回归课堂, 回归教 材,重视实验课的教学实践,为考生提供 更多的动手实践机会,将实验观察与知识 学习相结合,在实践活动中加深对知识和 实验原理的理解,在实践活动中培养探究 精神,提升科学探究素养。

(未完待续)

(续10月31日第1348期)

8. 下列化学用语对事实的表述不正 确的是

A.硬脂酸与乙醇的酯化反应:

 $C_{17}H_{35}COOC_2H_5 + H_2^{18}O$

B.常温时,0.1 mol·L⁻¹ 氨水的 pH= $11.1: NH_3 \cdot H_2O \rightleftharpoons NH_4^+ + OH_2^-$

C.由 Na 和 Cl 形成离子键的过程: $Na \times + Cl \rightarrow Na^{-}[\times Cl:]$

D. 电解精炼铜的阴极反应: Cu2++ **—** Си

【答案】A

【分析】本题是以化学用语考查为基 础,要求考生在判断化学用语是否正确的 同时,分析隐藏在化学用语中的反应原理 及过程。相比以往,试题在保持难度不变 的基础上,增加了素材的多样性,选项分 别涉及用化学方桯式表示的酯化反应同 位素示踪的原理、用电离方程式表示的弱 电解质电离的特征、用电子式表示化合物 中化学键的形成过程、用电极反应式表示 的电解池中电解原理等。

选项A考查羧酸与醇的酯化反应原 理,要求考生根据乙酸与乙醇生成乙酸乙 酯时的断键和成键位置,类比分析硬脂酸 与乙醇的酯化反应原理,考查考生对羧酸 与醇酯化反应时"羧酸脱羟基、醇脱氢原 子"反应原理的理解与迁移,根据醇中的 示踪氧原子应该在生成的酯分子中进行 判断。选项 B 考查强弱电解质的判断,以 中是否有得、失电子的角度对化学反应进行 及弱电解质电离的符号表达,即根据氨水 分类。要求考生在对现象的分析和反思中, 浓度及 pH 的定量关系,推理得出氨水为 体会化学反应的复杂性以及关注和理解影 一元弱碱,在水中存在电离平衡。选项 C 响反应复杂性的相关条件。

考查离子化合物 NaCl 的形成方式。根据 原子结构可知 Na 原子失电子形成阳离 子 Na+, Cl 原子得电子形成阴离子 Cl-, 两种离子以离子键结合为离子化合物 NaCl。选项 D 考查电解原理的理解和 应用。精炼铜中,粗铜变成精铜,即阳极 粗铜中的 Cu 失电子变成 Cu2+进入电解 液中,电解液中的 Cu2+在阴极得电子变 成 Cu 析出,形成精铜。

本题考查内容均为考生所学主干基 础知识,要求考生理解所学反应原理本 质,并能在新情境中进行类比迁移,并能 使用化学用语进行准确表达。

9.下列实验中的颜色变化,与氧化还 原反应无关的是

	Α	В	С	D
	NaOH溶 液滴入 FeSO ₄ 溶 液中		Na ₂ S 溶液滴入 AgCl 浊液中	热铜丝插入稀硝酸中
现象	产生白色 一 一 一 元 変 为 五 色 色 色 色 色 色 色 色 色 色 色 色 色	红,随后	白色逐	产生无色 气体,随 后变为红 棕色

【答案】C

【分析】本题是对元素化合物知识与化 学基本概念相结合的考查。试题以物质变化 中的颜色变化为切人点,要求考生不仅能够 复述、重现所学基础知识和所观察过的实验 现象,而且能够快速从反应的宏观现象辨识 转化到微观本质的探析,即能够快速从反应

A选项中 NaOH 溶液和 FeSO₄ 溶液 的反应,首先是碱溶液与盐溶液生成白 色沉淀 Fe(OH)2 的复分解反应,为非 氧化还原反应。在空气中,还原性较强 的 Fe (OH), 沉淀逐渐转化成红褐色的 Fe(OH)3,铁元素化合价从+2价升高到 +3 价,因此"白色沉淀→红褐色沉淀"的 转化发生了氧化还原反应。

B 选项中的氯水,涉及 Cl_2 与 H_2O 的 反应,既有强酸性物质 HCI 的生成,又有 强氧化性物质 HCIO 的生成。氯水显酸 性使石蕊溶液变成红色,HCIO的强氧化 性又使变红的石蕊溶液被氧化而褪色,因 此石蕊溶液由红色变成无色发生了氧化 还原反应。

C 选项中的白色 AgCl 转化为黑色 AgS 的反应,是难溶的 AgCl 转化为更难 溶的 AgS 的反应,是难溶电解质的转化, 转化中元素化合价没有变化,为非氧化还 原反应,因此该沉淀的颜色变化与氧化还 原反应无关。

D选项中Cu与稀HNO3的反应,溶 液变成蓝色 ,生成无色气体 NO。NO 气 体遇空气中氧气迅速转化为红棕色 NO2 气体,因此气体的颜色变化与氧化还原反

本题素材选自教材,涉及的元素为核 心元素,涉及的反应为中学化学主干基础 知识。考生学习时要将对物质中核心元素 的化合价与其性质紧密关联,将物质的性 质与对应的实验现象紧密关联,建立现象 与结论间证据推理的逻辑关系,并在分析 和解决实际问题中加以落实,在多角度自 主梳理总结中不断掌握。

(未完待续)